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Studies in Overhead Wire—Goubau Line
Above Ground

JIRO CHIBA, MEMBER, IEEE

Abstract—The transition theory which Kikuchi [1]-[6] proposed first

was improved and expanded in the range of the Sommerfeld line above
ground and even the Goubau line (G line) above ground. Then it was
proved by the experiment with the aid of the G line.
_ The solution for the electromagnetic field produced by an overhead
wire is derived using Maxwell’s equations and treating the situation as a
boundary vilue problem. In particular, the integrals which are caused by
the finite conductivity of the earth and which are responsible for the
distribution of the fields in the neighborhood of the surface of the earth
are evaluated by means of the saddle-point method. Based on the field
theory described above, the primary transmission line constants of the
G line above ground (R, L, C, and G) and the secondary transmission
line constants (yo = ao + jBo and Z,) were obtained, and then the
equivalent circuit for the G line above ground was given. The béhavior of
the line from an engineering standpoint is now completely determined by
the usual simple circuit theory. The transition of the G line from a ground
return transmission line of a surface-wave transmission line was proved
experimentally.

, 1. INTRODUCTION

T IS well known that a Goubau line (G line) [7] of
I infinite length in free space is capable of guiding electro-
magnetic waves without attenuation due to radiation, as
for example Sommerfeld’s wire waves [8].

In practice, however, the G line is installed at a certain
height above ground. We have a classic theory of the
ptopagation of the electromagnetic waves along overhead
wires developed by Carson and by Pollaczek as early as
1926 [9], [10]. However, at the present time when the
applications are tending toward the higher frequency
regions, their analysis is not applicable since it is restricted
to lower frequencies. Recently, remarkable advances in
the theoretical aspects have been achieved through the
studies of Kikuchi [1]-[6] and Amamiya [11]. Kikuchi
was the first to give the transition theory (from ground
return transmission line to surface-wave transmission line)
for the Sommerfeld line above ground.

In practical applications, electromagnetic interfeérence
due to leakage fields set somé limitations on such installa-
tions, whence the relevant theory of propagation and inter-
ference is very important. Although the analyses developed
in the publications cited above are correct in their own
rights, there is one aspect which has not been fully solved,
namely, the correct evaluation of integrals ascribed to the
finite conductivity of the earth.

Although a few works giving rigorous treatment in the
complex domain have been published [12], no complete
evaluations of such problems as the discontinuities due to
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the poles of integrands have been presented. Some of the
results from our continued works have been published
elsewhere [13]. We can say that great interest is focused
on the earth’s problem. Various authors (Wise [14],
Sunde [15], Wait [16], Coleman [17], and Knyazev [18])
have studied the earth’s problems, and recent research in
this area has been promising (Wait [19]-[21], Dos Santos
[22], Olsen and Chang [21], [23]). The objectives of the
present paper are to evaluate the integrals due to the finite
conductivity of the earth, utilizing the saddle-point method,
to derive expressions for the electromagnetic fields pro-
duced by the transmission line of infinite length installed
above ground, to find the primary constants of the G line
R,L,C,G and the secondary constants Zg,o,f,7,, and to
prove the transition theory by experiment.

I1. THEORETICAL FORMULATION OF ELECTROMAGNETIC
FiELDS

Assume that a line of infinite length and of sufficiently
small diameter is installed at a height # above ground and
carries a current Je 7o**J¢! (I = total axial current in
wire, yo = propagation constant of the transmission line,
w = angular frequency = 2nf, f = frequency). The diam-
eter of the line is much smaller than A. :

As shown in Fig. 1 in rectangular coordinates, the surface
of the earth is the plane at y = 0. Beneath the surface or,
in the region y < 0, the plane wave propagation constant

is ky (= ovpees(1 — jojwe;), Rek, >0, Imk, < 0,
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= permeability of free space, &, = &,%g, = dielectric
constant of the earth, g, = conductivity of the earth,
while above the surface, or in the region y > 0, the plane
wave propagation constant is k, (= oV U8y = o/ Hoto)-
From Maxwell’s equations,

E=VV- I + kIl
7.2
H=jweV><l'I=Ji€—V><l'I (1)
j110)]

where E,H are the electric and magnetic fields. IT is the

Hertzian vector given by [4], [20], [21]

qu'l J
1

VAII® + k,2TI® = 0,

VOO + kIO = y>0

y<0

where
J = IZ{5(x)0(y — h)

Z is the unit vector in the Z direction, and { stands for a
coefficient required to establish the correspondence between
the real wire current and the equivalent filament current.
The primary hertzian vector due to the line current
consists exclusively of the z component of I1,, where

ou. It 1 © e—jxu—ly—hl*/uz—).12
- 41211257ij_ e T )

Vut — 12
A= \/k12 + 70° )]
Re Vu? — M2>0

where we have used an appropriate Green’s function as a
particular integral of the inhomogeneous scalar Helmholtz
equation.

The secondary field due to the earth consists of both the
z and y components. If we introduce additional hertzian
vectors Il and IT,; for the region y > 0 and y < 0,
respectively, the resultant Hertzian vectors are

D =1, + 0, y=0
I, = I, y<0 4)
I, = 1, y=0
I1,% = Iy, y < 0. (5)

By matching fields at the boundary y = 0, we get

MW = 4, [H + f ] e vw-a du], y>=0

-
I, = f  EACEE y <0 (6)
nw = J‘ I, e~y — 2 du, y=0
n® = Azf L= gy, y<0 (7

@

where
Ay = (opI0) (4,31 = (wu, I0)(4k,*) ™1
H= Ho(l)(zﬂl) - Ho(l)(/hRo)

Hy"" = Hankel function of the first kind of order zero,

Imi, >0
I, = 20m) " '(Wu? = 42 = Vu? = 1,%)
'(k22 _ k12)—1e—(jxu+h*/u2—}.12)
I, = 2?0(]'75)_1(\/“2 - \/uz - 112)

. (N)— Ie—(jxu+h‘/u2—}.12)

N = kW2 = A2 + kWP = 357,
A = Nk = 02, ReVu? — 2,2 > 0
={x* + (y - B Ry = {x* + (y + W}V
From (1), (6), and (7), E in the air is
E, = A[C + S§{]
E, = A[-D + S,]
E,=A[F+ S; + S,] ®)
where
A = (3ol0)(jore,m) ™
= (jndyx[8){(ry) T H, D(Ayry) = (Ro)™ H V(4 Ry)}
= (judy/8{(r))" (b — y)H, D (Ayry)
+ Ro)™'(h + »H, (A, Ro)}

= (]'717/112)(4)’0)_I{Ho(l)(/ll’l) - Ho(l)('hRo)}
1 = f juM du SZ = f \/uz ol 122 Mdu

2 [
s,k

Yo - @

S, = f voM du 0 du ©)

(klz)(ZN) 1 —un (y+h)\/ﬁ

= {2k, = k)

,(\/uz — a2 - Ju? — lZZ)e—jxu—(y+h)‘/u2—/112
where
H,'V' Hankel function of the first kind of order #;
Yo = oo + jPos
%o attenuation constant (nepers per meter);

Bo phase constant (radians per meter).
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III. EVALUATION OF INTEGRALS

A. Mapping of the Contour

Since the integrand involves four branch points, two in
cach half-plane (u = +4, and +4,), a Riemann plane
with four sheets is needed in order to derive a single-valued
integrand.

In order to facilitate computation, we now transform the
variable by introducing the following relation:

u = A; sin a. 1o

Furthermore, if we assume cos 6 = x/R, and sin § =

(y + B[Ry, S; in (9) will be reduced

ki

Sl=2

f JAZ cosasing _jurosinw+a) gy (11)
Co N

where
N = jk,?A, cos a + k222 sin? o — A,

Cuts and C, are as shown in Fig. 2.

As we are concerned with electromagnetic fields far away
from the image of the line, the distance R, of the observer
from the image of the line is very large so that we assume
that |4,|R, > 1. With such values of Ry, the integral is
dependent for the most part on the region near the saddle
point. Hence the integration path C, is shifted to the line
of steepest descent C, through the saddle point a,, *here

a = (—7/2) — 6. (12)

Paths of integration in the o plane.

Therefore, (11) is reduced to

kg’
];
2 J

. e}/hRo+.I'(1~1/2)ROS2 exp [j(n+ (Arr/A1:))]

® 2,2 cosasina

S, = N

D+ Car/An)) 48 4 K (13)

The additional term K is provided to take the residue
into account which might appear by the passage across the
pole when the contour is shifted from C, to C,. Denoting
the pole in a plane by «,, we have

sin ap — (}'1)“1{/112 = (ki4)(k12 4+ k22)—1}1/2
cos a, = (1) 7 (ks + k)T VH(—kP).

Considering the values of k,, k,, and 4, this pole is
near the — /2 as shown in Fig. 2.

B. Integration along the Line of Steepest Descent and
Computation of Residue

If it can be assumed that the term « involved in (13) is
equal to o, we could readily perform the integration. The
term, however, has been proved to be nearly equal to a,,.
Hence we should avoid [24], [25] substituting o, in N(a).

As an alternative, we develop N(«) as

oN

N(a) = N(ay) + (5;) (¢ — ay). (14)
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This value for N(x) introduced into (13) leads to

ky? : jA1Ro+ j(1/2)A1Ro T2V
Sl= 1),151n6-e“°’(1/)‘° n
s 2
2
{ \/TC J‘T~/j(1/2)liRoexp[j(n+(i-1r/11i))]

]7"

V]
-e“d,1+K:, Im T > Othen ¢ > ¢

k,? . i i 27
= 71}, sin @ - /HRo+I(/DARoT oL

2
{ N r«f‘j(l/z)mcexp[j(n+(zu/1um

_J___.

2 0

-e* dl}, ImT < Othen ¢ < ¢' (15)
where
2 2
T={tan0+klllcoso— k%4, }
2k,2A, k,2, cos

. = IA2) R (ar/ 1))

When 0 < |¢,] — 4{n + #n,' (4,,/4,)}, the pole across
the C,, then ¢ > ¢’ (Fig. 3).
From (11),

2
K = —jn %1_2 A, sin 0 - @MRo+iA/DAROT?,

2
The substitution of K thus obtained into the first part of
(15) results in the same expression as the second part of
(15).
When we introduce numerical distance p = —1ji,R,T?,
we obtain

k%A,
S1s=_.] 121

(16)

sin 0 - cos @ - g/*1Ro

k%A%
2

. 2n
lid1|Ro

ky22, sin 6 + cos? 0 — k%A,

{1-Vv} an

for bothIm T > 0 and Im 7 < 0, where-

V(o) = 1 — j\mp - e * erfe (Wp)
1113 1 1351
A~ e __,+__-_._.__+ s
(2 p2 202 222 p° )
lpl > 1
=1—j\/np e ? —2
2 2-2
I B )
( 137 71357
ol < 1. (18)

Identical procedures apply to the integrals other than
S, In a practical surface-wave transmission line, we can
assume jAi; Ry = —4;;R,.

Therefore, the final results are

Sy = jNA2cos? 0 — A2 X
Sas = ki*(p0) ™'Y (19)

Sis = jAy X cos 0
S35 = JyoX
where
X = (ky?A1:/2){(jks?Ay; sin 0)
— (k2442 cos 0)(24,) 7 ~ (k2!
+ (sin B)(2m/A1;R0)' *{1 — V(p)}eHuike
Y = (Af2)(ks? — k)T
+ {(Ay;sin 8 — (VA,% cos? 8 — 4,%)}(sin 6)
© (2m/Aq;Rp) 1 2e HiRo,

On the line of steepest descent through the point a
(= &, + jm,, refer to Fig. 4) [26], we obtain

S = (—jk14/k22)(2R0 sinh ’11:)_1(”/)»11' sinh ’1bR0)1/2

*2sin &, - cos &g IHuiRolcoshmo Fsinhn) ()

The magnitudes obtained from (20) are negligibly smaller
than those obtained from (19). The term’s branch cut
integral can be omitted.

IV. DETERMINATION OF THE COEFFICIENT {

The { stands for a coefficient required to establish the
correspondence between the real wire current (Sommerfeld
line or G line) and the equivalent filament current. It is well
known that in case of thin wire the coefficient { = 1.

Electromagnetic wave propagation along a circular
cylinder has been investigated in detail for a long time (for
example, Sommerfeld [8], Stratton [27], and Goubau [7])
and the theories treat the Sommerfeld line without ground
and the G line without ground.

The { in (8) is to be determined so that (8) matches
those for the Sommerfeld line without ground or the G
line without ground at 2 = oco. When & = oo is introduced
into (8) and (9), this leads to

Ho(l)(/hRo) = H1(1)(/11R0) =0
Sys ~ Sas = 0.
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Thus from (8)

E, = T4 5,00, @1
n2
The filament current above ground is now reduced to the
case of a filament current without ground.
On the other hand, E, for the Sommerfeld line without
ground is [8], [27]
E

z

2
= H—l HyD(yry)
4ne,
and E; for the G line without ground is [7], [27]
2 2
D {1 _ U In ——2——} HoM(gr).  (23)
4meq 2 yAqa

By comparing (21) with (22), { = 1 for the Sommerfeld
line, and by comparing (21) with (23)

{ = {I—Q‘—Zb)zlnc—jd—a}

E =

for the G line, where

Ay = \/wzﬂoaa + 700 =~ \/wzﬂoﬁa - p?

Bd = gogd*

24

g specific inductive capacity of coated dielectric;
b  radius of coated dielectric;
y = 1.78107.

V. SERIES IMPEDANCE Z AND PARALLEL ADMITTANCE Y
OF THE G LINE IN THE PRESENCE OF THE EARTH

A. Formulation for Z and Y
From Maxwell’s equation,

Ezt = _grad ¢c - ijzt (25)

87

where E,, is the Z component of the electric field at the
wire surface (x = 0,y = h — a) ¢, and A4,, account for
the scalar potential at the wire surface (x = 0,y = 4 — q)
and for the z component of the vector potential at the wire
surface (x = 0, y = £ — a), and are represented by

A = ug(oIl/ot)
¢=-V-II (26)
given in part 2 of (6). We introduce the series impedance Z

and the parallel admittance Y of the transmission line
above the plane earth by the following equations:

1 .
= 'Iz [Ezt + ]wAzt]

0z . &,

¢, is the scalar potential at the surface of the dielectric
coated line (» = b). The following assumptions have been
made in working out the theory of the transmission line:
a <K h, b<<h a< wavelength, b « wavelength. Under
the aforementioned assumptions, E,, and ¢, are deter-
mined by only the primary field of the G line

. 2 -
5 =<1+J),{1_<A,,b) 1ni}\/%
2 yAq.a .

@7

“ 2na\/ 2
bu= gy Gy, 2 ) @
o Jjo2me, yiqal) e*(1 — jtan d)

(28)

where o, is the conductivity of the wire. ¢, and jwA,, are
obtained from (26) and (6)

_ Gab)* L} in
2 JAal 2
: {Ho(l)(lla) - Ho(l)('th)}

; 2
+Jwﬂ01 {1 _ (Ad) In L}
yAs0

jwd, =10 | {1
T

T
' —RVu2— 2.2
] e RyVu 1
. f du
o Vu? — 1% + Vut - 4,2

2
I {1 _ W) L}
VA0

_ Yo
P J2nwe,

[ E o - Hoa,R)
© -Rl*/uz—-llz
+ 2k,2 f __° __ du]
Yo kU — 22 1 kR - 2,2
29

where R = 2h — a.
From (27)-(29),

Z =R+ joL = LH)) [@ho | JOHo
2nav2 N o, 2m

|Z i - mO0R | + 222 s, 30)
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Y =G+ ij = = (b/a) — Ja)2ﬂ:80 (31)
— 7 WD) — H, DR + 28
ot (1 — j tan ) 2{0(1) o (AR} 2
where Equations (34) and (35) are applicable to the region
o~ RiVut—is2 ARy = 1. In the case of the present paper, R, =~ 10,
f \/ —a2 + i = 0, du (32)  and from Fig. 5 A;; ~ 0.1 at 16 MHz. Therefore, (34)
u y and (35) are applicable to the region frequency > 16 MHz.
S k.2 e~ Rifuz—as? du. (33) Comparing the results of the numerical integration by a
2= k,? Ju? — A2 + k2 Ju? — 2,2 ) computer, the error committed in transmission loss is at

R, L, G, and C are series resistance, series inductance,
parallel conductance, and parallel capacitance in the
presence of the earth. The part H,"’(1,R,) stands for a
contribution from the image of the line at y = —4. S,
and S, are supplementary terms which take into account
the effect of finite conductivity of the earth.

If k; - oo, S;=8,-0
and
S; =85,-0.

In much the same way as in Section III (saddle-point

method), we obtain the simple results

i 1 \/ 2n
Ay + NP — 0Ppoes + jouees 2N AuRy
Agi

if h-o oo,

e—i-uRl

S1=

€2
S 2 =

. O . .
A (32* =] —"2‘) - J\/w2ﬂ082 - Bz = JOUO,
weg

.l\/ 2n e ARy

(3%

most 7 percent even when A;R;, = 1 (f = 16 MHz, 17.5
dB/km—according to the results of the numerical in-
tegration; 18.9 dB/km—according to the results of the
method of steepest descent).

VI. CHARACTERISTIC EQUATION OF THE G LINE ABOVE
GROUND
From (25). (28). and (29). the characteristic equation is

_@_[ In (b/a)
wey Le*(1 — jtan )

+Z (1,008 - HOUR)) + 2S2]

+ Wl [J__;E {H,V(ha) — H'V(AR))} + 251]

(1 +) [ore

v

(36)
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In order to simplify the characteristic equation, we
assume that a wire is a perfect conductor, 4, = ji,; and
S; = S, = tan é = 0. Then the result is as follows:

ey = &t .

Ko(11:0) — Ko(41:Ry) -1
{In b/a)/e;*} + {Ko(A1:b) — Ko(A1:R1)}

(37

This is in agreement with the result of Section VII [see
(45)] according to circuit theory. Equation (37) holds to a
very good approximation in the VHF and UHF regions.
In Fig. 5 numerical results are given according to (37).

VII. PRIMARY TRANSMISSION LINE CONSTANTS OF THE
G LINE ABOVE GROUND

The following equations are applicable to the region
AR = 1. From (30), (31), (34), (35) and the Hankel
function formula,

(t+)
27!(1\/ 2

R+jcoL=Z={ 3“_0}

+ {J‘;’_ﬂe [Ko(Aya) — Ko(luRl)]}
n N

+ {jw#o A
M dyi + VB — 0’uge, + jops,

B \/ 2n
A’liRl

= {R’ + joL/} + {R* + joLS}

e—hﬂh}

89

where R, RS°, and R, are the wire resistance and the
equlvalent resistance for the ground, respectively (R =
RI+ RS+ R). L), L* and L; are the wire internal
inductance, the external inductance, and the equivalent
series inductance for the ground, respectively (L = L.} +
LS5+ L;). C, and G, are the wire capacitance and the
wire leakage conductance, respectively (Y, = G, + joC,).
C,; and G, are the equivalent capacitance for the dielectric
coat and the equivalent leakage conductance for the
dielectric coat, respectively (Y; = G; + joCp. C,, L,?, and
G, are the equivalent capacitance, the equivalent parallel
inductance for the ground, and the equivalent leakage
conductance for the ground, respectively (Y, = G, +
J@C = (1joL?)).

In Fig. 6 R, L, C, and G are indicated according to (38)
and (39). In Fig. 7 the elements of R,L are indicated and in
Fig. 8 the elements of C,G are indicated. From these
relations [see (38) and (39)] the equivalent circuit of the
G line above ground is as shown in Fig. 9.

VIII. SECONDARY TRANSMISSION LINE CONSTANTS OF THE
G LINE ABOVE GROUND

By (38) and (39) the characteristic impedance Z, is

. _\/ \/R + joL
© G + joC
< Jé = 60 {m (i/“)
C &

: {Ko(lua) -

(40)

+ Kolhab) — Koul,-Rl)} @.

Ko(A:Ry)} (4D)

Equation (41) holds to a very good approximation in the
VHF and UHF regions. In Fig. 10 Z, is indicated [accord-

+ {R, + joL}(Q) (38) ing to (41)].
G+joC =Y = Yo jowlne,
Ko(hib) — Ko(AuR +[__n___‘L_.]
[Ko(A1:b) olA1:R1)] ¥ — jtan 3) -
+ Ay \/ 2n e~ MR
At (32* —J &) - j\/wzﬂofiz — B% — joueo, 1R,
e,
= 1
1 . R 1
: jo2me, } jo2ne, jo2me,
Ko(A1:b) — Ko(A1:R,) In (b/a) AN 27JA R, e~ iR
£,(1 — j tan 8)
o Ay (32* =J 2‘) - j\/wzﬂosz — B — jouo,
e,
1
= 1 1 1 (©/m) (39)
+ +
G, + joC, G, + joC, ( 1 )
G, + j|wC, -
A oLt

g -
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Fig. 9. Equivalent circuit of the G line above ground and items of the primary transmission line constants R, L, C, and G.
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Fig. 10. Characteristic impedance of the G line above the ground.

By (38) and (39) the phase constant and the attenuation
constant are

Yo = do + jPo = V(R + joL)(G + joC) = JZ- Y

(42)
%o = g + 72 (Np/m) “3)
Ko(A1:0) — Ko(A4:Ry)
bo =K {M} + {Ko(A1ib) — Ko(d4:R))}
&*
(rad/m). (44)

From (44) and (3) the characteristic equation is
A’li

Ko(A1:0) — Ko(24:Ry)
{In (b/a)/e;*} + {Ko(Ay:0) — Ko(Ay;R)}

ky

(45)

Equations (43) and (44) hold to a very good approximation
in the VHF and UHF regions. This is shown in Fig. 5
[according to (44)].

In Fig. 11 « is indicated [according to (43)].

IX. EXPERIMENTAL RESULTS

The experiment was carried out at the experimental
installation set in the plane field. The outline of this in-
stallation is shown in Fig. 12. The measurement was by the
Deschamps-Storer method.

A. The Deschamps—Storer Method [29]

In the Deschamps-Storer method, the total losses (G-
line loss + two horn losses) are obtained from the measure-
ment and an analysis of the scattering matrix; the G-line
loss can be separated from the total losses by changing
length of the G line.

An example of the measurement is shown in Fig. 11.
Experimental values agree well with the theoretical results.
The same is true of the results obtained by the standing
wave method, but we omitted it from this paper. The
transition theory was proved by the experiment,.

Field distribution near the G line was obtained (close
agreement between measured and calculated values was
obtained), but we omitted it from this paper.

CONCLUSION

The features of the paper which seem to present new
results are as follows:

1) presentation of a reasonable equivalent circuit as a
passive line which involves the plane ground;

2) the extension of the theory to a dielectric-coated wire;

3) the saddle-point evaluation of the fields;

4) evaluation of transmission line parameters (R, L, C,
G, Zy, g, Bo, and y,) for the mode;

5) the verification of the transition theory which Kikuchi
proposed first by experimental work.
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CHIBA: GOUBAU LINE ABOVE GROUND

Generally speaking, the surface-wave transmission line is
influenced by the earth when it is wired over the earth.
When frequency is low, it becomes the ordinary ground
return transmission line mode; conversely, the ground
return transmission line mode is transformed into the
surface-wave transmission line mode by elevation of
frequency with a rise in degree of electromagnetic field
concentration. We need to consider the preceding charac-
teristics in planning the applications of the overhead wire
system.
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